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Abstract: In this paper, we have proposed an SVEIQR compartmental model
modifying the classical SEIR model with inclusion of vaccinated and quarantined
classes to explain the COVID-19 outbreak mathematically. We have calibrated our
model with the daily COVID-19 data reported by the WHO coronavirus dashboard.
To observe the disease dynamics of COVID-19, a detailed stability analysis of
the proposed SVEIQR model is carried out. Our results show that the disease
free equilibrium (DFE) is stable if the basic reproduction number is less than
unity and unstable otherwise. Moreover, endemic equilibrium (EE) is found to
be stable when certain restrictions hold. The expression for effective reproduction
number has been derived analytically and its value is calculated based on the
reported cases. Sensitivity analysis of effective reproduction number is performed
employing PRCCs and Latin hypercube scheme. We have compared short-term
and long-term transmission dynamics of COVID-19 for India with different levels
of vaccination and without control strategies. The impact of different degrees of
control interventions is ascertained with the numerical simulation of the model.

Keywords and Phrases: COVID-19, Equilibrium point, Stability, Sensitivity
analysis, Effective reproduction number, Numerical simulation.
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1. Introduction
The COVID-19 outbreak first surfaced in Wuhan, China, in the month of De-

cember 2019. The World Health Organization marked the illness as global pan-
demic on March 11, 2020. The WHO daily situational assessment states that since
the very start of the virus outbreak, it was spreading rapidly and posing a serious
threat to lives of people [31]. It has been noted that direct human contact is the
primary method of COVID-19 transmission [2, 14, 33]. Daily statistics throughout
the world has demonstrated that COVID-19 spreads almost exponentially in the
early stages of the pandemic [16].

In India and around the world, the COVID-19 pandemic has caused significant
damage. Its population dynamics are similar to the typical infection waves seen in
previous respiratory pathogen pandemics, such as the influenza in 1918 and in 2009
[10, 26]. The first SARS-CoV-2 infection wave in India began in late January 2020
and lasted for nearly nine months. Over the course of this time, India has recorded
a total of 11 million cases and 0.157 million deaths, with the peak occurring in
mid-September 2020 [31]. This was actually moderate in comparison with the sec-
ond wave, that started in mid-February 2021 and spread more explosively over
the whole country. The advent of more contagious SARS-CoV-2 strains, namely
B.1.1.7 (Alpha variant) and B.1.617.2 (Delta variant), of which the latter is the
main factor generating this second wave [27]. This outbreak began shortly after
the vaccination implementation, that began on January 16, 2021, and was further
exacerbated by the opening of gathering places, widely dispersed events follow-
ing massive gatherings after the first wave, and the lack of concern for personal
protective measures (correct and a habit of use of face masks) [18].

There is currently growing discussion over the possibility of a subsequent wave
of SARS-CoV-2 infection [27]. In other parts of the country, successive waves have
emerged and may be influenced by a variety of causes. For instance, the third
SARS-CoV-2 wave in the UK occurred in the winter of 2020, coinciding with the
region’s yearly influenza season in the northern hemisphere as well as occurring
after the removal of lockdown restrictions [7, 12]. Furthermore, the persistent
threat of viral evolution poses a potential recurrence in the future [28].

In anticipation to this pandemic, mathematical modeling has served a crucial
role by providing estimates of the basic reproduction number across regions, anal-
ysis based on treatments incorporated in the models, quantifying illness severity,
and more. The compartmental model developed by Kermack and McKendrick,
which is subsequently expanded to other epidemiological models for COVID-19,
serves as the basis for the vast majority of the works. By explaining many mathe-
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matical models [15], Anirudh (2020) explored briefly the prediction of COVID-19,
its growth, spread, and reduction. He also described the various problems and the
results [1]. Saeed et al. (2021) have provided thorough information on a number
of interventions for COVID-19 [21]. By presenting an SVIQR epidemic model for
COVID-19, Verma et al. (2022) have explored the consequences of vaccination
and other preventative interventions on the dynamics of coronavirus disease [30].
Bhadauria et al. (2022) investigated a straightforward model taking into account
the capability of viruses to survive in their immediate environment [5].

In this study, we create an epidemiological model that incorporates natural
births, deaths, vaccinations rate and infectious reduction of vaccinated individuals.
The population is divided into six groups, which include susceptible, vaccinated,
exposed, infected, quarantined and recovered. Home isolation and hospitalized
populations are included in the quarantine class of infectious compartment. The
main purpose of this study is to ascertain how reduced disease transmission rates
can be achieved by increasing detection rates of asymptomatic and symptomatic
unidentified persons. Here, we shall observe how the vaccination rate of suscepti-
ble individuals and other non-pharmaceutical interventions help to reduce disease
transmission and, eventually, the basic reproduction ratio.

The main goal of this work is to apply a deterministic compartmental model to
the patterns of the COVID-19 disease with the objective to analyze it, as well as
to identify some preventative methods for controlling it from spreading.

2. Model Formulation
For the mathematical formulation of the model, we have divided the total popu-

lation according to their disease status into six mutually exclusive epidemiological
state compartments: susceptible S (t), vaccinated V (t), exposed E (t), infected
I (t), quarantined Q (t) and recovered R (t) classes. The infected people who ex-
hibit severe symptoms are hospitalized and part of the confined group. People
who have successfully recovered from the COVID-19 disease and received a testing
result of zero are considered to be in the recovered class. The population N(t)
at any time t is given by N (t) = S (t) + V (t) + E (t) + I (t) + Q (t) + R (t). It
has been seen that by close contact with an infected person who belongs to class
I (t) or in the Q (t), a susceptible person may get infected. In theory, people who
are quarantined or isolated are unable from passing on the virus to others who
are susceptible persons, but in practice, we see that many members of the staff
at quarantine and isolation facilities, including doctors, nurses, and other medical
professionals, as well as their families, have caught the illness from such people.

The flow diagram of proposed SVEIQR model for COVID-19 is illustrated in
Figure (1). The following set of differential equations captures the dynamics of
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COVID-19 in the proposed SVEIQR model :
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Figure 1: Compartmental diagram of SVEIQR model for COVID-19

dS (t)

dt
= (1− p) Λ + ηR− (β + µ+ ν)S,

dV (t)

dt
= pΛ + νS − (βν + µ)V,

dE (t)

dt
= βS + βνV − (σ + µ)E,

dI (t)

dt
= σE − (γ + µ+ δ) I,

dQ (t)

dt
= γ (1− κ) I − (τ + µ+ δ)Q,

dR (t)

dt
= γκI + τQ− (η + µ)R



(1)

with S (0) > 0, V (0) ≥ 0, E (0) ≥ 0, I (0) ≥ 0, Q (0) ≥ 0, R (0) ≥ 0.

In the above model, we assume β = b

(
ωII + ωQQ

N

)
and βν = b (1− ε)

(
ωII + ωQQ

N

)
,

where b is the effective contact rate, ωI and ωQ represent the transmission proba-
bility of virus after contact with the individual in status I and Q respectively. The
notation ε represents infectious reduction of vaccinated individuals. For the sake
of simplicity, we shall also use the following notation :
g1 = µ+ ν; g2 = µ; g3 = σ + µ; g4 = γ + µ+ δ; g5 = τ + µ+ δ; g6 = η + µ.
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Table 1: Description of the parameters used in the system.

Parameter Description
Λ Recruitment rate of individuals into the population
p Proportion of the recruitment individual who is vaccinated
ν Vaccinated rate
β The transmission rate from susceptible to exposed class
βν The transmission rate from vaccinated to exposed class
µ Natural death rate
δ Disease-induced death rate
σ Exists rate from the exposed class
κ Proportion of the infectious who recovered naturally
τ Recovered rate of quarantined individuals
η Rate at which individual lose immunity
γ Rate at which individual exists from the infectious class

Now, the system (1) can be re-written as follows :

dS (t)

dt
= (1− p) Λ + ηR− (β + g1)S,

dV (t)

dt
= pΛ + νS − (βν + g2)V,

dE (t)

dt
= βS + βνV − g3E,

dI (t)

dt
= σE − g4I,

dQ (t)

dt
= γ (1− κ) I − g5Q,

dR (t)

dt
= γκI + τQ− g6R



(2)

3. Model Analysis

3.1. Positivity of Solution
The COVID-19 outbreak model provided by system (1) must demonstrate that

all state variables always remain positive for all t ≥ 0 in order to be epidemiologi-
cally realistic. Thus, we have the following theorem:

Theorem 1. Let F (t) = (S (t) , V (t) , E (t) , I (t) , Q (t) , R (t)) and R6
+ = {F (0) ∈

R6 : F (0) ≥ 0}. Then, the solution set F (t) of the proposed SVEIQR model for
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COVID-19 model will be non-negative for all t ≥ 0 in R6
+.

Proof. From the first equation of the system of equations (2), it is noted that

dS (t)

dt
≥ − (β + g1)S

which on integration provides S (t) ≥ S(0)e−(β+g1)t.
Hence, we conclude that S (t) ≥ 0 for all t ≥ 0.
Continuing in the same manner, it can be proved that
V (t) ≥ 0, E (t) ≥ 0, I (t) ≥ 0, Q (t) ≥ 0 and R (t) ≥ 0 , for all t ≥ 0 .
Thus, the solution set falls into the hyperplane F (t) =

{
(S, V, E, I,Q,R) ∈ R6

+

}
.

Hence, the proposed SVEIQR model for COVID-19 is epidemiologically realistic.

3.2. Invariant Region
Here, we shall demonstrate that the proposed SVEIQR model is correctly laid

out biologically and mathematically in the invariant set F (t) and establish that
the closed region F (t) is a positively invariant.

Theorem 2. The solution set of the system (1) with the initial conditions is stated
in the F (t) given by

F (t) =

{
(S (t) , V (t) , E (t) , I (t) , Q (t) , R (t)) ∈ R6

+ : 0 < N (t) ≤ Λ

µ

}
Proof. Taking the sum of the populations of all the six compartments, we get

N (t) = S (t) + V (t) + E (t) + I (t) +Q (t) +R (t) . (3)

Differentiating and using system of equations (2), we get

dN

dt
= Λ− µN − δ (I − δ)Q

from which, we conclude that

dN

dt
≤ Λ− µN. (4)

By applying the theorem on the differential inequalities [6], the solution of (4) is
obtained as

N (t) ≤ Λ

µ
−
(
Λ

µ
−N0

)
e−µt (5)
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where N0 = N (0), the initial population. Now, as t → ∞, then from (5), we find

that N (t) → Λ

µ
from which, it is concluded that 0 ≤ N ≤ Λ

µ
. Thus, all the feasible

solutions of model (1) converge in the region F (t). Hence, we have

F (t) =

{
(S (t) , V (t) , E (t) , I (t) , Q (t) , R (t)) ∈ R6

+ : 0 < N (t) <
Λ

µ

}
.

3.3. Existence of Disease-Free Equilibrium (DFE)
For the existence of the disease-free equilibrium (DFE), we have

dS

dt
= 0;

dV

dt
= 0;

dE

dt
= 0;

dI

dt
= 0;

dQ

dt
= 0;

dR

dt
= 0.

Using the system of equations (2), we get the following equations :

(1− p) Λ + ηR− (β + g1)S = 0 (6)

pΛ + νS − (βν + g2)V = 0 (7)

βS + βνV − g3E = 0 (8)

σE − g4I = 0 (9)

γ (1− κ) I − g5Q = 0 (10)

γκI + τQ− g6R = 0 (11)

For DFE, we put I = 0, so that from (9), (10) and (11), we get
E = 0, Q = 0, and R = 0 .

Now, by taking β = 0, βν = 0 and R = 0 in (6), we get S =
(1− p) Λ

g1
.

Again, by using the value of S in equation (7), we get V = Λ{pg1+(1−p)ν}
g1g2

.

Hence, the DFE is obtained as E1 (S
0, V 0, E0, I0, Q0, R0), where

S0 =
(1− p) Λ

g1
, V 0 =

Λ {pg1 + (1− p) ν}
g1g2

, E0 = 0, I0 = 0, Q0 = 0, R0 = 0

3.4. Basic Reproduction Number
The next generation matrix approach, put out by Diekmann et. al., and Van

den Driessche and Watmough, is a generalized method for calculating the basic
reproduction number [9, 29]. Here, we break down the right-hand side of the
system (2) that corresponds to the infected classes E, I, and Q as F −W , where

F =

βS + βνV
0
0

 =

b
(
ωII + ωQQ

N

)
S + b (1− ε)

(
ωII + ωQQ

N

)
V

0
0


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and

W =

 g3E
−σE + g4I

−γ (1− κ) I + g5Q

 ,

The non-negative matrix F and the non-singular matrix W, for xj = E, I,Q,
representing the new infectious terms and remaining transfer terms are given by

F =
∂F
∂xj

∣∣∣∣
(E1)

=

0 b
ωI

N0

S0 + b (1− ε)
ωI

N0

V 0 b
ωQ

N0

S0 + b (1− ε)
ωQ

N0

V 0

0 0 0
0 0 0


=

0 b
ωI

N0

(S0 + (1− ε)V 0) b
ωQ

N0

(S0 + b (1− ε)V 0)

0 0 0
0 0 0


W =

∂W
∂xj

∣∣∣∣
(E1)

=

 g3 0 0
−σ g4 0
0 −γ (1− κ) g5

 , |W| =

∣∣∣∣∣∣
g3 0 0
−σ g4 0
0 −γ (1− κ) g5

∣∣∣∣∣∣ = g3g4g5

∴ W−1 =
1

g3g4g5

 g4g5 0 0
σg5 g3g5 0

γ (1− κ)σ g3γ (1− κ) g3g4


Now, the multiplication of the above values of F and W−1 gives

FW−1 =


bσ

N0

(
S0 + (1 − ε)V 0

) {
g5ωI + γ (1 − κ)ωQ

} bg3

N0

(
S0 + (1 − ε)V 0

) {
g5ωI + γ (1 − κ)ωQ

}
g3g4

bωQ

N0

(
S0 + (1 − ε)V 0

)
0 0 0
0 0 0


The average number of secondary infectious produced by a single infections in a
susceptible population when vaccine intervention has been employed is referred to
the effective reproduction number R0 (v) [13]. Therefore, the spectral radius of the
next generation matrix is R0 (v) for the proposed model, and is given by

R0 (ν) =
bσ

g3g4g5N0

[
S0 + (1− ε)V 0

]
{g5ωI + γ (1− ωQ)} (12)

Putting the values of S0 and V 0 in equation (12), we get

R0 (ν) =
bσ

g3g4g5N0

[
(1− p) Λ

g1
+ (1− ε)

Λ {pg1 + (1− p) ν}
g1g2

]
{g5ωI + γ (1− ωQ)}
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or

R0 (ν) =
bσµG1 [G2 (1− ε) {pg1 + (1− p) ν}]

(µ+ ν) g2g3g4g5
(13)

where G1 = {g5ωI + γ (1− ωQ)} and G2 = (1− p) g2 = (1− p)µ.

3.5. Existence of Endemic Equilibrium (EE)
At the endemic equilibrium (EE), infection is always present in the system.

Let E∗ (S∗, V ∗, E∗, I∗, Q∗, R∗) be the endemic equilibrium point. Then, for EE, we

have
dS

dt
= 0;

dV

dt
= 0;

dE

dt
= 0;

dI

dt
= 0;

dQ

dt
= 0, where I∗ ̸= 0.

For simplicity, we use q = 1− p, 1− ϵ = ϵ1, 1− κ = κ1, d1 = β + g1, d2 = (βv + g2).

Now, by
dS

dt

∣∣∣∣
E∗

= 0, we have

S∗ =
(1− p) Λ + ηR∗

(β + g1)
=

qΛ + ηR∗

d1
(14)

By
dV

dt

∣∣∣∣
E∗

= 0, we have

V ∗ =
pΛ + νS∗

(βv + g2)
=

pΛ + νS∗

d2
(15)

By
dE

dt

∣∣∣∣
E∗

= 0, we have

E∗ =
βS∗ + βvV

∗

g3
(16)

By
dI

dt

∣∣∣∣
E∗

= 0, we have

I∗ =
σE∗

g4
(17)

By
dQ

dt

∣∣∣∣
E∗

= 0, we have

Q∗ =
(1− κ) γ

g5
I∗ =

κ1γ

g5
I∗ (18)

By
dR

dt

∣∣∣∣
E∗

= 0, we have

R∗ =
γκI∗ + τQ∗

g6
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Substituting the value of Q∗ from (18) in the above equation, we get

R∗ =

(
γκg5 + γκ1τ

g5g6

)
I∗ (19)

Again, substituting the value of R∗ from (19) in (14) and (15), we respectively get

S∗ =
qg5g6Λ + γη (κg5 + κ1τ) I

∗

d1g5g6

and

V ∗ =
pd1g5g6Λ + qνg5g6Λ + γνη (κg5 + κ1τ) I

∗

d1d2g5g6

Now, substituting the values of S∗ and V ∗ in (16), we get

E∗ =
βvpd1g5g6Λ + (βd2 + βvν) {qg5g6Λ + γη (κg5 + κ1τ) I

∗}
d1d2g3g5g6

Again, substituting the value of E∗ in equation (17), we get

I∗ =
σ

g4

[
βvpd1g5g6Λ + (βd2 + βvν) {qg5g6Λ + γη (κg5 + κ1τ) I

∗}
d1d2g3g5g6

]
Hence, the EE is obtained as E∗ (S∗, V ∗, E∗, I∗, Q∗, R∗), where

S∗ =
qg5g6Λ + γη (κg5 + κ1τ) I

∗

(β + g1) g5g6
, V ∗ =

p (β + g1) g5g6Λ + qνg5g6Λ + γνη (κg5 + κ1τ) I
∗

(β + g1) (βv + g2) g5g6
,

E∗ =
βvp (β + g1) g5g6Λ + (β (βv + g2) + βvν) {qg5g6Λ + γη (κg5 + κ1τ) I

∗}
(β + g1) (βv + g2) g3g5g6

,

Q∗ =
γκ1

g5
I∗ and R∗ =

(
γκg5 + γκ1τ

g5g6

)
I∗

3.6. Stability Analysis of Disease-Free Equilibrium

Theorem 3. The disease-free equilibrium point E1 of the epidemic model (1) is
locally asymptotically stable when R0 < 1, otherwise unstable.

Proof. For the disease free equilibrium, we take β = b
(

ωII
0+ωQQ0

N

)
= 0 and
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βν = b (1− ε)
(

ωII
0+ωQQ0

N

)
= 0. Therefore, the Jacobian matrix J (E1) at the DFE

point E1 is given by

J (E1) =



−g1 0 0 −bωIS
0

N0
− bωQS0

N0 η

ν −g2 0 − b(1−ε)ωIV
0

N0 −b (1− ε)ωQV
0

N0
0

0 0 −g3
bωIS

0

N0
+

b (1− ε)ωIV
0

N0

bωQS
0

N0
+

b (1− ε)ωQV
0

N0
0

0 0 σ −g4 0 0
0 0 0 γ (1− κ) −g5 0
0 0 0 γκ τ −g6


The characteristic equation |J (E1)− λI| = 0 of the system (1) gives us∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−g1 − λ 0 0 −bωIS
0

N0
−bωQS

0

N0
η

ν −g2 − λ 0 −b (1− ε)ωIV
0

N0
−b (1− ε)ωQV

0

N0
0

0 0 −g3 − λ
bωIS

0

N0
+

b (1− ε)ωIV
0

N0

bωQS
0

N0
+

b(1−ε)ωQV 0

N0 0

0 0 σ −g4 − λ 0 0
0 0 0 γ (1− κ) −g5 − λ 0
0 0 0 γκ τ −g6 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Substituting A =
bωIS

0

N0
+

b (1− ε)ωIV
0

N0
and B =

bωQS
0

N0
+

b (1− ε)ωQV
0

N0
and

expanding the determinant along second, first and the fourth columns successively,
we get three eigenvalues as : λ1 = −g2, λ2 = −g1, λ3 = −g6. The remaining
eigenvalues are given by

−g3g4g5− (g3g4 + g3g5 + g4g5)λ− (g3 + g4 + g5)λ
2−λ3+σ {g5A+ λA+ γ (1− κ)B} = 0 (20)

The last term of L.H.S. of equation (20) after simplification gives

σ {g5A+ λA+ γ (1− κ)B} = σλA+ σ [g5A+ γ (1− κ)B]

= σλA+
bσ

[
S0 + (1− ε)V 0

]
{g5ωI + γ (1− κ)ωQ}

N0g3g4g5
g3g4g5

= σλA+R0g3g4g5

Hence, the equation (20) reduces to the following form :
λ3 + (g3 + g4 + g5)λ

2 + (g3g4 + g3g5 + g4g5 − σA)λ+ g3g4g5 (1−R0) = 0
which can also be written as follows:

λ3 + aλ2 + bλ+ c = 0 (21)

where a = g3 + g4 + g5 > 0, b = g3g4 + g3g5 + g4g5 − σA > 0, c = g3g4g5 (1−R0)
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Table 2: Routh table for the cubic equation (21) .

λ3 1 b 0
λ2 a c 0

λ b− c

a
0 0

1 c 0 0

Routh-Hurwitz criterion of order three [20, 24] implies that the three roots of

(21) have negative real part if a > 0, b− c

a
> 0 or b >

c

a
, c > 0.

These criteria are satisfied only if (1−R0) > 0 i.e. R0 < 1. Hence, all the roots
of the characteristic equation of system (1) at the DFE point E1 will have negative
real parts if R0 < 1.

Therefore, the DFE point is locally asymptotically stable when R0 < 1, other-
wise unstable.

3.7. Stability Analysis of Endemic Equilibrium

Theorem 4. The endemic equilibrium point E∗ of the epidemic model (1) is locally
asymptotically stable if R0 > 1 and inequalities (20) hold.
Proof. The Jacobian matrix J (E∗) at EE point E∗ is given by

J (E∗) =



− (β + g1) 0 0 − bωIS
∗

N − bωQS∗

N η

ν − (βv + g2) 0 − b(1−ε)ωIV
∗

N − b(1−ε)ωQV ∗

N 0

β βv −g3
bωIS

∗

N + b(1−ε)ωIV
∗

N
bωQS∗

N +
b(1−ε)ωQV ∗

N 0
0 0 σ −g4 0 0
0 0 0 γ (1− κ) −g5 0
0 0 0 γκ τ −g6



=


J11 J12 J13 J14 J15 J16
J21 J22 J23 J24 J25 J26
J31 J32 J33 J34 J35 J36
J41 J42 J43 J44 J45 J46
J51 J52 J53 J54 J55 J56
J61 J62 J63 J64 J65 J66


Let us define Ri =

∑6
j=1,j ̸=i |Jij| , for i = 1, . . . .6. Then, we have

R1 =
6∑

j=1,j ̸=1

|Jij| = |J12|+ |J13|+ |J14|+ |J15|+ |J16| =
bωIS

∗

N
+

bωQS
∗

N
+ η

R2 =
6∑

j=1,j ̸=2

|Jij| = |J21|+ |J23|+ |J24|+ |J25|+ |J26| = ν +
bε1ωIV

∗

N
+

bε1ωQV
∗

N
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R3 =
6∑

j=1,j ̸=3

|Jij| = |J31|+ |J32|+ |J34|+ |J35|+ |J36|

= β + βv +
bωIS

∗

N
+

bε1ωIV
∗

N
+

bωQS
∗

N
+

bε1ωQV
∗

N

R4 =
6∑

j=1,j ̸=4

|Jij| = |J41|+ |J42|+ |J43|+ |J45|+ |J46| = σ

R5 =
6∑

j=1,j ̸=5

|Jij| = |J51|+ |J52|+ |J53|+ |J54|+ |J56| = γκ1

R6 =
6∑

j=1,j ̸=6

|Jij| = |J61|+ |J62|+ |J63|+ |J64|+ |J65| = γκ+ τ

Gershgorin stability theorem [4] states that the system will be stable if two condi-
tions : Jii < 0 , and Ri < |Jii| , for i = 1, 2, . . . 6 are satisfied.

It can be observed that J11 = − (β + g1) < 0, J22 = − (βν + g2) < 0, J33 =
−g3 < 0, J44 = −g4 < 0, J55 = −g5 < 0, J66 = −g6 < 0.

Hence, the first condition of the Gershgorin stability theorem is satisfied.
Additionally, the following inequalities need to be hold in order for the second

hypothesis of the Gershgorin stability theorem, Ri < |Jii| ; i = 1, 2, . . . 6 to hold.

bωIS
∗

N
+

bωQS
∗

N
+ η < (β + g1) ,

ν +
bε1ωIV

∗

N
+

bε1ωQV
∗

N
< (βν + g2)

β + βv +
bωIS

∗

N
+

bε1ωIV
∗

N
+

bωQS
∗

N
+

bε1ωQV
∗

N
< g3

σ < g4

γκ1 < g5

γκ+ τ < g6


(22)

Consequently,the endemic equilibrium point E∗ of the epidemic model (1) is locally
asymptotically stable when inequalities (22) holds.
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4. Numerical Simulation, Results and Discussion
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Figure 2: Model fitting with the active COVID-19 infective cases in India from
December 30, 2021 to January 28, 2022.

Figure 3: PRCCs showing the effect of varying the input parameters on R0 (ν).

The reported active infected cases and the vaccinated population in India are
6553 and 551,003,319 respectively by December 20, 2021 [31]. So, we set the ini-
tial population in the infected and vaccinated compartments for the simulation as
I(0) = 6563 and V (0) = 551, 003, 319 respectively. The number of initial quar-
antined (hospitalized and home isolated) cases is considered as 20 % of the total



Mathematical Analysis of SVEIQR Model for COVID-19 315

Table 3: Values of parameters used for the simulation of SVEIQR model

Parameter Value Source
Λ = 65937.74 Estimated
p = 0.4 Assumed on the basis of WHO report
β = 0.000432 Estimated
µ = 0.0002 [17]
δ = 0.00025 [17]
σ = 0.3 [25]
ν = 0.3 Assumed
η = 0.011 [23]
τ = 0.0701 [11]
κ = 0.05 [8]
b = 1.12 [3]
γ = 0.012 [32]
ε = 0.8 Assumed
ωI = 3.8 Assumed
ωQ = 1.3 Assumed

active infected cases, and it is calculated as Q(0) = 1313. Since there is no infor-
mation on the initial exposed population, which is believed to be twice as many as
active infected cases, so we take E (0) = 13126. According to the record of Min-
istry of Statistics and Programme Implementation, the total population in India is
1,380,004,385 [18]. Hence, the initial population of the susceptible class is obtained
as S(0) = N − (V + E +Q+ I +R) = 828, 978, 827.

4.1. Model Fitting and Validation of Model

For model fitting and parameter estimation, we have worked with active COVID-
19 cases data of India during the first stage of the third wave of COVID-19 and
invented vaccination starting period (from December 20, 2021 to January 25, 2022).
By the model fitting, we have estimated the values of parameters such as disease
transmission rate, proportion of the recruitment individual who is vaccinated. The
birth rate is (17.44/1000) per year for India and so it is reasonable to take the
daily recruitment rate (Λ) as 65,937.74. Other parameter values are taken from
the published literature. Using above initial conditions, available values of the pa-
rameters, we have fitted proposed model (1) and compared with the reported data
of WHO daily dashboard of coronavirus (WHO, 2021) in Figure (2). We have es-
timated other key parameters including the effective reproduction number. Figure
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(2) demonstrates the actual reported and the model estimated cases of confirmed
COVID-19 cases. The graph confirms that the model is valid.

4.2. Sensitivity Analysis for R0

Figure 4: Contour plot of R0 (ν) with vaccine coverage (ν) and efficacy (ϵ).

Figure 5: Contour plot of R0 (ν) with (i) effective contact rate (b) and efficacy (ϵ)
(left panel) ; (ii) effective contact rate (b) and treatment rate (τ) (right panel).

We calculate sensitivity indices with regard to the corresponding parameters
as the initial disease transmission is exclusively related to R0 (ν). Using the Latin
hypercube scheme and Partial rank correlation coefficients (PRCCs), we undertake
sensitivity analysis [22]. The Figure (3) depicts PRCCs that demonstrate how al-
tering the input parameters affect R0 (ν). Hence, the effective reproduction number
R0 (ν) is seen to increase for all parameters with positive PRCCs and decline for
all parameters with negative PRCCs as their values are increased. The model’s
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most influential parameters are those with big PRCC values (> 0.5 or < −0.5)
and correspondingly low p-values (< 0.05). The most important parameters can
be found by examining Figure (3). Model parameters that should be aimed to
stop the spread of the disease are effective contact rate (b), the infection reduction
(vaccine efficacy) of vaccinated individuals (ε), the exist rates from the exposed
and infected classes σ and γ. Additionally, b is discovered to be the parameter
with the highest positive sensitivity. As their absolute values of PRCCs are higher
than equivalent values of other parameters, parameters b, ωI and ε have a strong
correlation with R0 (ν). Moreover, p, µ and ν are the other sensitive parameters
that negatively affect R0 (ν). The contour plots (4) and (5) provide the clearest
representation of the patterns of the change in the value of R0 (ν). So, it follows
that strengthening the relevance of isolation and vaccination quickly is the best
course of action for disease control.
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Figure 6: Dynamical behavior of the disease taking parameter values in Table 1
for R0 (ν) > 1.

4.3. Disease Dynamics
Using model parameter values in Table 3, we get R0 (ν) = 1.4280 > 1. In

order to study the disease dynamics and validation of proposed model (1), we
simulate the daily coronavirus infective, susceptible, exposed and vaccinated cases
for the period of 90 days (three month) starting from the initial date of our study
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Figure 7: Dynamical behavior of the susceptible and vaccinated population with
different levels of control strategies.
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Figure 8: Dynamical behavior of the infected and recovered population with dif-
ferent levels of control strategies.

period December 20, 2021 using the parameter values in the Table 3. Clearly, the
estimated cumulative coronavirus cases by the model remains increasing in the next
90 days unless other extra intervention measures are induced in the society. This
represents the dynamics of the disease in present scenario.

To study the nature of dynamics of coronavirus diseases, we simulate our model
(1) for a long-term (180 days) for different values of the parameters ν and β with
remaining parameters listed in the Table 3. Here, ν and β represent the various
level (degree) of interventation measures of control parameters.

Figures (7) and (8) depict the graphical representation of the simulation of
the COVID-19 model (1) as a function of time with and without further control
strategies. The long-term impact of the interventions with expected values of
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the parameters seems to be successful to mitigate the spread of the disease in
the total number of individuals in the disease-infected classes and the vaccinated
compartment.

5. Conclusion
Our model simulations suggest that the novel coronavirus disease has potential

to exhibit increase exponentially with high rate in the initial stage and remains
as endemic disease for a long period in the society with existing level of imple-
mentation of non-pharmaceutical and medical intervention. But the situation can
be controlled by the implementation two control measures; first maintaining the
effectiveness of isolation or quarantined and social distances that decreases the
transmission rate; second increasing the rate of full dose (booster dose) of the vac-
cine. Long-term model simulation with the control measure illustrates the sufficient
optimum rate of control measures able to effective control in a community and may
eliminate the coronavirus transmission in the long-term.

Future studies of the research can include some more compartments such as
dead class, immigrated population class to make the broad model. Instead of taking
the whole of India as the study population, each state of India may be considered
separately for better policies of controlling the spread of the COVID-19.
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